-
最佳答案:把圆系方程配方成(x-a)^2+(y-b)^2=r^2的形式(x-a)^2就是(x-a)的平方圆心坐标为(a,b),半径为
-
最佳答案:(x-a)^2 + (y+2a)^2 = 5a^2+5,整理为a的方程:(2x-4y)a = x^2+y^2-5观察方程可得定点必然满足2x-4y=0且x^2+
-
最佳答案:在直角坐标系中,圆心为(1,√3)圆的方程为(X﹣1)²+(Y﹣√3) ²=1X²﹣2X﹢1﹢Y²﹣2√3Y﹢3=1X²﹢Y²﹣2X﹣2√3Y﹢3=0化为极坐标
-
最佳答案:极坐标系的解法见LS,对高中生来说不太好理解.直角坐标系的解法如下:两个坐标系的转化方程为 x=rcosθ,y=rsinθ 牢记这一点就可以.那么转成直角坐标系
-
最佳答案:ρ=2cos(θ-π/4)设圆上一点P(ρ,θ),连接原点O、A、P,组成一个等腰三角形,两个边长1对应的角度都是π/4-θ(用θ-π/4也可以),边长ρ对应的
-
最佳答案:解题思路:(Ⅰ)先设圆上任一点坐标为(ρ,θ),由余弦定理得出关于ρ,θ的关系式,即为所求圆的极坐标方程;(Ⅱ)设Q(x,y)则P(2x,2y),根据P在圆上,
-
最佳答案:今天考试吧?哈哈,平时要好好学习啊!原点到直线的距离j是半径,用点到直线的公式,求得半径=4/√(√3^2+1)=2,所以圆的公式是x^2+y^2=4
-
最佳答案:cosα+根号3sinα=1
-
最佳答案:x=ρ·cosθ,y=ρ·sinθ,ρ²=x²+y²直角坐标系中点(x,y)对应极坐标中点坐标为(ρ,θ)此题中,已知在极坐标系中,已知圆C的圆心C(3,π/6
-
最佳答案:(I);(II)本试题主要考查了圆的极坐标方程的运用,以及余弦定理的综合运用。(1) 因为圆C的圆心,半径 r =2,Q点在圆C上运动,由设圆C上任意一点M(r