-
最佳答案:(1)f(x)=(x-8)^2-61+q,可知在[-1,1]范围内f(x)是单调减函数.f(-1)=20+qf(1)=-12+q分别令f(-1)和f(1)为0,
-
最佳答案:解题思路:根据二次函数y=x2+mx+(m+3)有两个不同的零点,即得到△>0,即关于m的不等式∵二次函数y=x2+mx+(m+3)有两个不同的零点∴△>0即m
-
最佳答案:f(x)=x^2-16x+q+3=(x-8)^2-64+q+3在区间[-1,1]上存在零点,则f(-1)>=0,即1+16+q+3>=0,得q>=-20f(1)
-
最佳答案:满足一下条件:(1)f(1)>0 (2) f(2)>0 (2) Δ>0 (3)1
-
最佳答案:解题思路:根据二次函数y=x2+mx+(m+3)有两个不同的零点,即得到△>0,即关于m的不等式∵二次函数y=x2+mx+(m+3)有两个不同的零点∴△>0即m
-
最佳答案:(1)-12
-
最佳答案:该函数对称轴为-b/2a=8 所以区间[-1,1]上是连续的函数 函数在区间[-1,1]上存在零点,所以f(1)*f(-1)<0 (1-16+q+3)*(1+1
-
最佳答案:f(x)=x²+(3a-2)x+a-1f(1)=1+3a-2+a-1=4a-2f(3)=9+9a-6+a-1=10a+2因为在[1,3]上有且只有一个零点,所以
-
最佳答案:代入(0,1)得到c=1同理代入(2.0)4a+2b+1=0得到a=-0.5b-0.25由b^-4ac>0和对称轴
-
最佳答案:f(x)=x2-2ax+4图像开口朝上一个零点在(0,1)内,另一个零点在(6,8)∴{f(0)=4>0{f(1)=5-2a{a>5/2{a>10/3{a10/