-
最佳答案:矩阵的秩不超过其行数与列数
-
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
-
最佳答案:每个n维向量都是方程组的解能说明A就是0矩阵所以它的秩r(A)=0比如(1,0..,0)^T是AX=0的解这个就可以得到第一列全是0,再取(0,1,0..,0)
-
最佳答案:因为AX=0显然有A^TAX=O即AX=O的解都是A^TAX=O的解;A^TAX=Ox^TA^TAX=O(AX)^TAX=0所以AX=0
-
最佳答案:A是零矩阵.原因:Ax=0的n个线性无关的解向量与n维基本向量组ε1,ε2,...,εn等价所以 ε1,ε2,...,εn 也是AX=0的解逐一代入可知 A =
-
最佳答案:|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
-
最佳答案:(A) 正确因为 m = r(A)
-
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
-
最佳答案:证明:若AX1=0, 则 A^TAX1 = 0即 AX=0 的解都是 A^TAX=0 的解若 A^TAX2 = 0则 X2^T A^TAX2 = 0所以 (AX
-
最佳答案:|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0 仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0