-
最佳答案:若r1,r2线性相关则r1,r2成倍数关系,既有r1=kr2而知道r1-r2为齐次方程的解,r1-r2=(1-k)r2所以有A(1-k)r2=(1-k)Ar2=
-
最佳答案:是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解 不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解 非齐次线性方程组就有唯一解r(A)
-
最佳答案:|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
-
最佳答案:|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0 仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0
-
最佳答案:选3可逆 所以|A|不等于0 其次方程组只有唯一解0,非齐次只有唯一解 2是万能公式 一定对
-
最佳答案:命题不正确的是D
-
最佳答案:因为AB=0,所以r(A)+r(B)≤n,又因为B不为非零矩阵,所以r(B)≥1,所以r(A)≤n-1,当r(A)比n-1还小的话,此时意外着n-1阶子式都等于