-
最佳答案:在f(x)上取点B(x,y) B关于A的对称点B'(-x,2-y)在函数h(x)上 所以2-y=-x-1/x+2 y=x+1/x 2.g(x)=x+1/x+a/
-
最佳答案:由于题目要求f(x)的值域为R,说明真数里的这个表达式(x+a/x-4)能够取到全体正数∴x+a/x-4的最小值应该≤0 (只考虑x>0的情况,x<0时f(x)
-
最佳答案:这个函数是一个分段函数,用图像法来分析较为简单:当x≤1时,f(x)=x²-4x+1是一个对称轴为x=2的一元二次函数,根据其图像可知,它在(—∞,1]上单调递
-
最佳答案:解题思路:先把对称轴找出来,再讨论对称轴和区间的位置关系可得结论.∵f(x)=4x2-kx-8的对称轴为x=[k/8],开口向上,所以在对称轴右边递增,左边递减
-
最佳答案:∵f(x)=4x 2-kx-8的对称轴为x=k8 ,开口向上,所以在对称轴右边递增,左边递减;又因为函数f(x)=4x 2-kx-8在区间[5,20]上有单调性
-
最佳答案:g(x)=3x+a在x∈[0,2]上的最大值是6+a函数f(x)=x^3-3x和函数g(x)=3x+a,若∀x∈[0,2],f(x)>g(x)恒成立,只要f(x
-
最佳答案:在定义域单增,即只要保证-1在定义域内,所以-1-a-2>=0,所以a
-
最佳答案:f'(x)=ax-2+1/x=(ax²-2x+1)/x,因此在(1,+∞)中只有一个极点,因此f'(x)=0在(1,+∞)中有一个单根或者两个相同的实根.不过事
-
最佳答案:f'(x)=3x²-2ax-1