-
最佳答案:不是一样用公式吗?y'+p(x)y=Cy=e^(∫-p(x)dx))(C1+C∫e^(∫-p(x)dx))dx)C1是任意常数
-
最佳答案:您想得太复杂了.解方程是寻求方程的解,是探索性的过程.常数变易法本质就是换元法,只不过换元的形式有点特别,有些复杂而已.它无非是假设方程的解是 y=u(x)e^
-
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
-
最佳答案:右边看 成 Ce^0,用代系数法,或者算子法都行了.
-
最佳答案:很简单,由于[a(x)]'+P(x)*a(x)=Q(x)①[b(x)]'+P(x)*b(x)=Q(x)②①-②得[a(x)-b(x)]'+P(x)*[a(x)-
-
最佳答案:方程两边代入x=0,得f(0)=0,这是后面得到的微分方程的初始条件.方程两边求导,得f'(x)+2f(x)=2x.解一阶线性微分方程y'+2y=2x得y=e^
-
最佳答案:证:反证法!要证y1,y2之比不为常数,即证明y1,y2线性无关!假设y1,y2线性相关,设y2=ky1,因为y1,y2是二阶非齐次线性方程的特解,故它们都不是
-
最佳答案:解题思路:利用一阶线性非齐次微分方程解的结构即可∵y1(x)-y2(x)是对应齐次线性微分方程y'+P(x)y=0的非零解∴它的通解是Y=C[y1(x)-y2(
-
最佳答案:考虑方程的通解y*;特解yt;;则通解方程应该是y=C*y*+yty1=ay*+yt;y2=by*+yt.y2不等于y1;a不等于b所以选B