-
最佳答案:连续
-
最佳答案:可导可微关系不可导=不可微可导=可微可导连续关系不连续一定不可导,连续也不一定可导.但可导必然连续.在某点的导数就是该点切线的斜率; 对多维情况,若有多个偏导数
-
最佳答案:偏导数存在且连续可以推出函数可微,函数可微可以推出极限存在和偏导数存在.可导则连续,连续但不一定可导(比如一条折线),函数上连续则存在极限(反推便知,若不存在极
-
最佳答案:反证法.如果存在f(x)不等于0,不妨设1.0 < x - a < 1,否则 增大a,或者缩小x.2.f(x) = max{|f(t)| | a
-
最佳答案:函数Z=f(x,y)在(0,0)点可微==>函数Z=f(x,y)在(0,0)点连续==>函数Z=f(x,y)在(0,0)点邻域内有定义;函数Z=f(x,y)在(
-
最佳答案:买本复习全书啊,这样问问题问到什么时候