-
最佳答案:涉及到极限的问题都是收敛问题,不止是对数列和函数,在高等数学里还有级数(数项级数、函数项级数及Fourier级数)收敛、函数列收敛和广义积分收敛,等等,以及一致
-
最佳答案:收敛函数就是趋于无穷的(包括无穷小或者无穷大),该函数总是逼近于某一个值,这就叫函数的收敛性,也就是说存在极限的函数就是收敛函数.从字面可以含义,就可理解为,函
-
最佳答案:收敛函数在收敛点局部是有界的函数.B.正确这样可以么?
-
最佳答案:收敛.首先0(x(1-x))^2>...>(x(1-x))^n>0随n增加是单减的.于是积分也是单减的,所以收敛.
-
最佳答案:1.数列{Xn}有界是数列收敛的充分条件,数列{Xn}收敛是数列{Xn}有界的必要条件2.函数f(x)在点x0连续是f(x)在X0可导的充分条件,函数f(x)在
-
最佳答案:单调有界连续函数一定收敛.这是充分条件.充要条件我不知道
-
最佳答案:因为{Xn}单调,F(x)也单调F(Xn)是单调的F(X)在(-∞,+∞)内单调有界故F(Xn)在(-∞,+∞)内单调有界根据单调有界定理知道F(Xn)必收敛即
-
最佳答案:1/n^p,这个级数当p1收敛
-
最佳答案:1/(z-2)=1/[2+(z-4)]=1/2*1/[1+(z-4)/2]要求|(z-4)/2|
-
最佳答案:复分析复分析是研究复函数,特别是亚纯函数和复解析函数的数学理论。这些函数定义在复平面上,其值为复数,而且可微。研究中常用的理论、公式以及方法包括柯西积分定理、柯