-
最佳答案:这些不好在这写的!第一题用CREMMER克莱默法则.第二题先求A的特征根,再分别求出特征向量,自己好好看书吧!
-
最佳答案:X1=(1,-3/4,-1/3,1,0) X2=(5,-16/3,-1/3,0,1)通解k1(1,-3/4,-1/3,1,0) ,k2(5,-16/3,-1/3
-
最佳答案:系数矩阵 A=[1 1 1 1][2 1 3 5][1 -1 3 -2][3 1 5 6]行初等变换为[1 1 1 1][0 -1 1 3][0 -2 2 -3
-
最佳答案:系数矩阵 A=1 -2 -1 -1 52 1 -1 2 -33 -2 -1 1 -22 -5 1 -2 2用初等行变换化为行最简形1 0 0 0 7/40 1
-
最佳答案:写出方程组对应的增广矩阵为:2 1 -1 1 14 2 -2 1 22 1 -1 -1 1 第2行减去第1行×2,第3行减去第1行~2 1 -1 1 10 0
-
最佳答案:(1) A-->r2+2r1,r3+3r1,r2*(1/7)1 2 -3 -20 7 -1 00 14 -2 0r3-2r21 2 -3 -20 1 -1/7
-
最佳答案:这是线性方程组的解的结构的内容设AX=b是非齐次线性方程组, 即 b是非零列向量.其导出组是指齐次线性方程组 AX=0.若 ξ 是AX=b的解(称为特解), η
-
最佳答案:增广矩阵 B=(A, b)=[1 1 1 1 1 1][3 2 1 1 -3 0][0 1 2 2 6 3][5 4 3 3 -1 2]初等行变换为[1 1 1
-
最佳答案:希望对你有所帮助,我刚考完线性代数!也希望得到你的认可!
-
最佳答案:解非齐次线性方程组, 有无穷多解时,需要把通解写成基础解系的线性组合加特解的形式.有唯一解时不需要,也没有基础解系.