-
最佳答案:2中解法其实是一样的,结果都是一个线性表示,只不过,你所谓的那种正常求法是求出具体数字,不过最后的结果都是x自由变量的线性表示,另一种解法他没有赋值而已
-
最佳答案:设A是一个n 阶可逆矩阵,E是n阶单位矩阵,X是一个n乘n的未知矩阵,解矩阵方程AX=E就得到A的逆矩阵.这相当于解n个方程组,每一个方程组都是n元线性方程组.
-
最佳答案:直接把增广矩阵化成阶梯型,然后讨论
-
最佳答案:不晓得你学没学非线性方程组,学过了就好说多了,不过看到你图片最上面有增广矩阵,就按照那个来吧,手打的,排版可能不大规矩,将就着看吧(话说这个是德语咩?)α 1
-
最佳答案:化成行最简型矩阵比较简单最后一行不一定是零
-
最佳答案:(1) A-->r2+2r1,r3+3r1,r2*(1/7)1 2 -3 -20 7 -1 00 14 -2 0r3-2r21 2 -3 -20 1 -1/7
-
最佳答案:系数矩阵的秩小于等于未知数的个数
-
最佳答案:用初等行变换将增广矩阵化为行最简形写出同解方程组自由未知量都取0得特解写出导出组的同 解方程组自由未知量分别取 1,0,...; 0,1,0,...;0,0,.
-
最佳答案:非齐次线性方程组Ax=b对增广矩阵进行初等行变换,化为阶梯形即可.
-
最佳答案:答案A:矩阵=(-2,1,1)可代入计算:(1,0,2)转置乘(-2,1,1)=1*(-2)+0*1+2*1=-2+0+2=0;(0,1,-1)转置乘(-2,1