n元线性方程组
-
最佳答案:解题思路:直接根据n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n以及非齐次线性方程组与其导出组的解的关系来选择答案.由于n元线性方程组Ax=b
-
最佳答案:AX=0只有零解,可推出: R(A)= N.即A的秩为N.而A可为k*N矩阵, 其中k>=N.即A不一定是N阶方阵.
-
最佳答案:设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
-
最佳答案:n元线性方程组AX=b有唯一解的充分必要条件是 r(A) = r(A,b) = nr(A) = n 并不能保证 r(A) = r(A,b)比如 增广矩阵 =1
-
最佳答案:n元线性方程组AX=b无解那么增广矩阵(A b)的秩大于A的秩所以r(-A)=r(A)+1选
-
最佳答案:AX=B对于任意B有解任一n维列向量可由A的列向量组线性表示A的列向量组与n维基本向量组ε1,ε2,...,εn等价A的列向量组线性无关|A| ≠ 0.
-
最佳答案:对的.把X按列分块 X=(X1,...,Xs)AX=0AXi = 0, i=1,2,...,s
-
最佳答案:证明:设 kη+k1ζ1+k2ζ2+...+kn-rζn-r = 0等式两边左乘A,由 Aη=b,Aζi = 0 得kb = 0.因为 AX=b 是非齐次线性方
-
最佳答案:它的通解中所含基础解系解中线性无关的向量的个数均为n - r 个