-
最佳答案:因为 r(A)=2, 所以 Ax=0 的基础解系含 4-2 = 2 个解向量.因为 (p1+p2)-(p2+p3) = (-1,2,-1,2)^T(p1+p2)
-
最佳答案:每个n维向量都是方程组的解能说明A就是0矩阵所以它的秩r(A)=0比如(1,0..,0)^T是AX=0的解这个就可以得到第一列全是0,再取(0,1,0..,0)
-
最佳答案:必要性证明:设矩阵A的行向量组为[a1...an],矩阵B的行向量组为[b1...bn]Ax=0与Bx=0,设解为[X],有Ax=0,即a1x=0...anx=
-
最佳答案:Ax = b 总有解则 Ax = εi 有解所以 εi 可由 A 的列向量组线性表示所以单位向量可由A的列向量组线性表示所以单位向量与A的列向量组等价反之,因为
-
最佳答案:第一句话对.第二句:因为非齐次线性方程组的两个解的和不再是方程组的解, 所以方程组没有极大无关组.齐次线性方程组的解向量构成向量空间, 而非齐次线性方程组不能.
-
最佳答案:这可以从两个角度考虑.1.齐次线性方程组Ax=0的向量形式为 x1a1+...+xnan = 0 (ai是A的列向量)其非零解 (k1,...,kn)^T 意味
-
最佳答案:设β是AX=0的解,则 Aβ=0.所以 (a1,...,an)β =0所以 A的列向量 以β的分量为组合系数 的线性组合 等于0
-
最佳答案:向量就是一维矩阵,列向量就是将矩阵的任意一列看做向量形成的矩阵比如A=[A1,A2,A3,A4...]A1~An就是大小为m行1列的列向量在这句话里,线性组合指
-
最佳答案:先将向量方程组进行化简(行与行的加减,列与列的加减),最好能将最后几行化简为o,然后根据各列的关系,就可以求出极大线性无关组了.其中最简部分(不全为0的行或列)
-
最佳答案:若Ax=b有解,则b可由A的列向量线性表示; 而 A^TY=0 的解与A^T的行向量正交,所以 A^TY=0 的解与A的列向量正交,故与b也正交.反之逆推回去即