-
最佳答案:因为f(x)是零到正无穷上的正值连续函数,且1/f(x)在零到正无穷上的积分小于正无穷(即为一定值)所以1/f(x)在正无穷上是趋于0的,即f(x)在正无穷上是
-
最佳答案:函数极限存在,只能证明局部有界比如说f(x)=1/x,当x->+∞时,f(x)->0,极限存在但显然f(x)在(-∞,+∞)上是发散的只能证明在(-∞,X)∪(