-
最佳答案:求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程(2
-
最佳答案:椭圆.r1和r2分别为相内切和外切的圆的半径.d1和d2分别为动圆圆心到内切圆和外切圆的距离.则动圆的半径为r1-d1=d2-r2.即有d1+d2=r1+r2成
-
最佳答案:解题思路:设动圆圆心为,半径为R,设已知圆的圆心分别为,将圆方程分别化为标准方程得:当圆M与圆相切时,有,同理,得,所以点M的轨迹是以为焦点,长轴长为12的椭圆
-
最佳答案:(1)设动圆圆心的坐标为,半径为r又内切和外切的几何意义所以所求曲线轨迹为椭圆,方程为:⑵设直线方程为直线与椭圆交与A, B联立方程组把直线方程代入椭圆方程化简
-
最佳答案:解题思路:设动圆圆心M(x,y),半径为r,则|MC1|=r+3,|MC2|=r-1,可得|MC1|-|MC2|=r+3-r+1=4<|C1C2|=6,利用双曲
-
最佳答案:则点M到点C2的距离与点M到点C1的距离之和是8,则点M的轨迹是以C1、C2为焦点的椭圆,其中2a=8,得:a=4,c=1,则b²=a²-c²=15,则点M的轨
-
最佳答案:解题思路:由于圆O1:(x+3)2+y2=1,圆O2:(x-3)2+y2=81,动圆M分别与圆O1相外切,与圆O2相内切.故可知动点M到两个定点O1(-3,0)
-
最佳答案:解题思路:由于圆O1:(x+3)2+y2=1,圆O2:(x-3)2+y2=81,动圆M分别与圆O1相外切,与圆O2相内切.故可知动点M到两个定点O1(-3,0)
-
最佳答案:解题思路:由于圆O1:(x+3)2+y2=1,圆O2:(x-3)2+y2=81,动圆M分别与圆O1相外切,与圆O2相内切.故可知动点M到两个定点O1(-3,0)
-
最佳答案:解题思路:由于圆O1:(x+3)2+y2=1,圆O2:(x-3)2+y2=81,动圆M分别与圆O1相外切,与圆O2相内切.故可知动点M到两个定点O1(-3,0)