-
最佳答案:非齐次线性方程组 AX=b 有唯一解的充分必要条件是 r(A)=r(A,b) = n (n为未知量的个数)
-
最佳答案:解题思路:直接根据n元线性方程组Ax=b有唯一解的充要条件r(A)=r(.A)=n以及非齐次线性方程组与其导出组的解的关系来选择答案.由于n元线性方程组Ax=b
-
最佳答案:设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
-
最佳答案:证明:充分性:如果线性方程组有两个不同的的解,那么它的差就是导出组(相应的齐次线性方程组)的一个非零解.因之,如果导出组只有零解,哪么方程组有唯一解.必要性:如
-
最佳答案:n元线性方程组AX=b有唯一解的充分必要条件是 r(A) = r(A,b) = nr(A) = n 并不能保证 r(A) = r(A,b)比如 增广矩阵 =1
-
最佳答案:1)充分性:如果线性方程组有两个不同的的解,那么它的差就是导出组(相应的齐次线性方程组)的一个非零解.因之,如果导出组只有零解,哪么方程组有唯一解.2)必要性:
-
最佳答案:用Cramer法则.非齐次线性方程组有唯一解的充要条件是系数矩阵的行列式不为0,换句话说就是你说的系数矩阵线性无关.而有解就说明等号右端的向量可以由系数矩阵的列
-
最佳答案:因为 AX=B有解,所以 r(A)=r(A,B)所以此时AX=B 有唯一解r(A)=nAX=0 只有零解x≠0时 Ax ≠ 0x≠0时 (Ax)^T(Ax) >
-
最佳答案:对的.设方程组为AX=b, A=(a1,a2,...,am)必要性.若 |A|≠0, 则 r(A)=m所以a1,a2,...,am线性无关而任意m+1个m维向量
-
最佳答案:唯一解的充要条件是R(A)=R(B)=r=n,即r=n【唯一秩等于变量的个数.】