-
最佳答案:可以有无穷多组解,例如:x+2y+z=42x-y+3z=43x+y+4z=8
-
最佳答案:1-2r20 0 4-2a -90 1 a 43 5 7 1当 4-2a=0 即 a=2 时,r(A)=2,r(A,b)=3所以 a=2 时方程组无解
-
最佳答案:这是错误的.正确的是:方程组Ax=b无解的条件是增广矩阵的秩大于系数矩阵的秩.
-
最佳答案:(A)=n 不能保证 r(A,b) = r(A) , 所以(A)不对.r(A)=n 只能保证在方程组有解时解唯一.
-
最佳答案:矩阵秩的性质:r(A)≤r(A,B)≤r(A)+r(B),r(B)≤r(A,B)≤r(A)+r(B).所以方程组Ax=b的矩阵A与(A,b)的秩的关系是:r(A
-
最佳答案:系数行列式 =λ+3 1 2λ λ-1 13(λ+1) λ λ+3= λ^2(λ-1).所以当λ≠0且λ≠1时,方程组有唯一解.当λ=0时,增广矩阵 =3 1
-
最佳答案:这个问题可以这样理解系数矩阵的秩小于增广矩阵的秩时 就是给出更多的限制条件,最后使满足条件的解变成了无解.反之就是限制条件不多,满足条件的解就由越多 当他们相等
-
最佳答案:选A进行初等变换 矩阵A= 1 -λ -10 -2λ +6 2当λ =3时,方程组无解
-
最佳答案:(1) 如果方程的个数与末知量的个数相同的时候,你可以先通过求系数行列式不等于零时,原非线性方程组有唯一解这种情形的λ.再取λ使系数行列式等于零时,用增广矩阵来
-
最佳答案:求特征值和特征向量时对应的方程组是齐次线性方程组只有当系数矩阵的行列式等于0时,方程组才有非零解此时的非零解即对应的特征值的特征向量