-
最佳答案:指数函数:在进行数的大小比较时,若底数相同,则可以根据指数函数的性质得出结果.若底数不同,则首先考虑能否化成同底数,然后根据指数函数的性质得出结果;不能化成同底
-
最佳答案:当对数函数的底数大于0小于1时,函数图象过点(1,0),从左向右逐渐下降,从右向左逐渐逼近y轴;当对数函数的底数大于1时,函数图象过点(1,0),从左向右逐渐上
-
最佳答案:1)幂函数的底数相同,指数不同,i)底数大于1,指数越大,值越大!(因为底数大于1的幂数函数是增函数)ii)底数小于1,指数越小,值越小!(因为底数小于1的幂函
-
最佳答案:底数为2时,log(x/2)=logx-log2=logx-1与 logx 相比要少 1就是 log2(x)=log2(x/2)+1
-
最佳答案:一般如果是比较指数之间的大小我记这个不清楚可以问我那上面字看不太清楚那我写一遍图看得到吧嗯简洁就单看这个图我自己得出这样的规律,左边的,图像越往上,底数越小只看