-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:可导必连续,连续不一定可导充分不必要
-
最佳答案:1,是;存在.2,等等,你这句“但是根据上面连续函数的概念,f(x)-f(△x)≠0”是怎么来的?注意到两个解释的过程是不一样的,既前者是x→x.,后者是x→△
-
最佳答案:不对 可导和连续没有必然的关系 你想如果函数在区间不连续它一样有导函数 例子是当区间有可去间断点时
-
最佳答案:考虑函数y=sin(1/x)x^2,当 x=0时其值定义为0;则该函数在x=0处由定义可导且导数值为0,但其导函数在x=0处的极限不为0(实际上不存在).这就举
-
最佳答案:可导必然连续,但是连续不一定可导可导是建立函数连续的基础下的,但函数连续不一定可导,比如说分段函数y=-x+1(x1),这个函数在1点连续但不可导.说的还算清楚
-
最佳答案:一切初等函数在其定义域上都是可导的,因此要判断一个函数在某个区间是否可导只需要看该区间是不是定义域上的子区间.而由于可导的函数必然是连续函数,因此一般来说可导函
-
最佳答案:f(2)=10, 这个是关键.右导数是6,OK.左导数=lim_(x->2-)((3x+1)-10)/(x-2)=3lim_(x->2-)(x-3)/(x-2)
-
最佳答案:连续不一定可导,A是错的,比如φ(x)=|x|,x=0不可导证明B,易知,f(a)=0f'(a)=lim(x->a)[(x-a)φ(x)]/(x-a)=φ(a)
-
最佳答案:可导一定连续,连续不一定可导.可导要求一点左右导数存在且相等.连续要求该点有定义,且其极限值等于函数值.