偏函数连续的条件
-
最佳答案:x的1/2次方导数存在 但是不连续 类似地偏导数也一样 还有那个有连续偏导数不是可微的充要条件而是充分条件
-
最佳答案:奇点就是偏导不存在的点,当然函数无定义肯定没偏导,也是属于奇点的,求采纳 是复变里的吧推广后的柯西积分定理和柯西积分公式条件一样,都是区域
-
最佳答案:多元函数好像是必要非充分条件吧.可微是很强大的条件,任意方向导数都存在都不能推出可微.感觉应该要沿任意曲线都可导才能推出可微.补充:刚看了下微积分书,充要条件是
-
最佳答案:在这里写不清楚,基本思路应该是:假设f关于x可导,关于y导数连续.那么在(x0,y0)首先可以写df1=df/fx|(x0,y0)*dx,然后df2=df/dy
-
最佳答案:函数Z=f(x,y)的偏导数在区域D内连续是Z=f(X,y)在D内可微的充分条件,但不是必要条件.一楼的错误,在任何一本高等数学上都有这个命题的证明.
-
最佳答案:偏导存在未必连续,比如偏x存在,那就关于x连续(根据一元函数的性质),但是整个不连续;连续也未必可导,偏导当然也未必存在
-
最佳答案:告诉你个口诀:可导一定连续,连续一定可积,连续一定有界,可积一定有界,可积不一定连续,连续不一定可微,可微一定连续,偏导连续一定可微,偏导存在不一定连续,连续不
-
最佳答案:解题思路:根据LPdx+Qdy与积分路径无关的充要条件[∂P/∂y=∂Q∂x],写出LQ(x,y)dx-P(x,y)dy与路径无关的充要条件.由于LPdx+Qd