-
最佳答案:设F(x)=f(x)+g(x) f(x)和g(x)是偶函数 则F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x) 故F(x)是偶函数
-
最佳答案:f(x)=f(-x)g(x)=lim(dx趋近于0){[f(x+dx)-f(x)]/dx}=lim(dx趋近于0){[f(-x-dx)-f(-x)]/dx} (
-
最佳答案:1.若f(x)是偶函数则f(x)=f(-x) 即f(0+x)=f(0-x)所以对称轴为x=(0+0)/2 即y轴所以图象与y 轴对称2.设其定义域为W,而x属于
-
最佳答案:证:设偶函数为f(x),奇函数为g(x)则之和:h(x)=f(x)+g(x)因为f(x)=f(-x),g(x)=-g(-x)所以h(-x)=f(-x)+g(-x
-
最佳答案:将x=x-1代入f(2+x)=-f(x)=>f(1+x)=f(2+x-1)=-f(x-1)=-f(1-x)=>f(x)的图像关于点(1,0)对称.f(2+x)=
-
最佳答案:设f(x)是定义在实数轴上的函数.则[f(x)+f(-x)]/2是个偶函数,[f(x)-f(-x)/2]是个奇函数这两者之和便是f(x)
-
最佳答案:令F(x)=f(x)+g(x)f(x),g(x)是偶函数F(-x)=f(-x)+g(-x)=f(x)+g(x)=F(x)∴F(x)是偶函数f(x),g(x)是奇
-
最佳答案:2.设arctan1/2=A,arctan1/3=Btan(arctan1/2 + arctan1/3)= tan(A+B)=( tanA+ tanB)/(1-
-
最佳答案:1)设f(x),g(x)为定义在区间(-l,l)上的函数,F(x)=f(x)+g(x)当f(x),g(x)都为偶函数时f(x)=f(-x)g(x)=g(-x)F
-
最佳答案:.首先函数的拥有奇偶性的条件是定义域关于原点对称F(x)=f(x)+f(-x)F(-x)=f(-x)+f(x)=F(x) 所以F(x)是偶函数G(x)=f(x)