-
最佳答案:系数矩阵的秩小于等于未知数的个数
-
最佳答案:该齐次线性方程组的解空间的维数是n-r.该齐次线性方程组的任意的n-r个线性无关的解向量都是在解空间的一个向量组,构成解空间的一组基,所以构成该方程组的一个基础
-
最佳答案:首先必须说明的是 n个未知数必须需要最少n个线性无关的方程组才能解算出来而当齐次线性方程组系数矩阵的秩等于未知量个数时方程组的系数矩阵总是能化简成这样的对角阵形
-
最佳答案:因为 m=r(A)
-
最佳答案:解题思路:充分运用“r(A)=r(A b)=n时,Ax=b有唯一解”和“r(A)=r(A b)<n时,Ax=b有无穷多解”,以及““r(A)<r(A b)时,A
-
最佳答案:矩阵之间的等价关系具有以下性质1 反身性 A~A2 对称性 若A~B,则B~B3 传递性 若A~B,B~C,则A~C.对任何方阵A,A~E(行变换)的充分必要条
-
最佳答案:唯一解的充要条件是R(A)=R(B)=r=n,即r=n【唯一秩等于变量的个数.】
-
最佳答案:将常数先带进去,然后再解方程组!不过,你确定你没写错吗?你的方程中一共有E R F S xA yA xS yS xF九个变量,后面七个一直,三个方程,两个变量啊