-
最佳答案:建议你把幂函数的图象画一下.通常研究幂函数的增减都在第一象限内.当a大于0,函数在第一象限内是增函数.当a等于0,y等于x的0次方,即y=1,它在第一象限是常函
-
最佳答案:(1)令x<0,则-x>0,于是f(x)=f(-x)=-x(1-x)=x(x-1)∴x<0时,f(x)=x(x-1);x≥0时,f(x)=x(1+x).(这是两
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f
-
最佳答案:解题思路:用单调性定义来证明,先在给定区间上取两个变量,且界定大小,不妨设x1<x2<0则有-x1>-x2>0,再由“f(x)在(0,+∞)上是增函数”可得到f