-
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
-
最佳答案:解题思路:解:(1)由ρ=得ρ∴∴ 曲线C表示顶点在原点,焦点在x上的抛物线 (5分)(2)化为代入得(10分)(或将直线方程化为直角坐标方程用弦长
-
最佳答案:解:(1)由ρ=2sinθ,得x 2+y 2-2y=0,即x 2+(y-) 2=5.。。。。。。。4分(2)解法一:将l的参数方程代入圆C的直角坐标方程,得即t
-
最佳答案:解题思路:(Ⅰ)由得即5分(Ⅱ)将的参数方程代入圆C的直角坐标方程,得,即由于,故可设是上述方程的两实根,所以故由上式及t的几何意义得:|PA|+|PB|==。
-
最佳答案:解题思路:由得,化为直角坐标方程为,即.(Ⅱ)将的参数方程代入圆C的直角坐标方程,得.由,故可设是上述方程的两根,所以又直线过点,故结合t的几何意义得=所以的最
-
最佳答案:直线方程:参数方程为x-1=t=-y,因此y=1-x极轴坐标:p=1,转化为直角坐标则为圆心在原点,半径为1的圆,x^2+y^2=1因此x+y=1与x^2+y^
-
最佳答案:解题思路:(I)利用,易得曲线C的直角坐标方程;(II)直线过点,根据直线的参数方程中的几何意义,知道,将直线的参数方程与抛物线方程联立,利用韦达定理转化为关于
-
最佳答案:x=2+5ty=3+8t (t为时间)理由:不知你学过矢量没?其实位移就是这样分解的把x和y的位移合成起来就是一条直线