-
最佳答案:设A为系数矩阵增广矩阵B=(A,b)=a11 a12 ……a1n-1 a1na21 a22 ……a2an-1 a2n……an1 an2 ……annn-1 ann
-
最佳答案:设B=(A,b)也就是把b这一列添加到矩阵A的右侧形成一个新的矩阵B,如果B的秩等于矩阵A的秩,那么方程组有唯一解,答案可以写成r(A,b)=r(A)
-
最佳答案:|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
-
最佳答案:秩是n-2,所以线性方程组AX=0的基础解系所含向量的个数是2,两个相加为n.
-
最佳答案:A是n阶可逆方阵,说明|A|≠0,说明A满秩,说明Ax=0只有0解
-
最佳答案:|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0 仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0
-
最佳答案:初学做这题目, 恐怕你看不懂呢因为 r(A)=n-1所以 Ax=0 的基础解系含 1 个解向量.且 |A|=0.又由 AA*=|A|E=0所以 A* 的列向量都
-
最佳答案:A的秩为n-1
-
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
-
最佳答案:解题思路:不难看出(1,1,…,1)T是方程的解,然后利用基础解系的定理,解的维度等于阶数减去秩可以得出基础解系的个数,然后求出基础解系.n阶矩阵A的各行元素之