-
最佳答案:.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解齐次线性方程组的系数矩阵秩r(A)
-
最佳答案:若系数矩阵满秩,则齐次线性方程组有且仅有零解,若系数矩阵降秩,则有无穷多解,且基础解系的向量个数等于n-r.
-
最佳答案:选择C,对(A|b)(b=(b1,b2,……bn)’)进行初等矩阵变换可得见图片(画得不好,但可以表示就行),其中最后一列b1',b2',……bn'为b=(b1
-
最佳答案:因为 r(A)=r所以 Ax=0 的基础解系含 n-r 个解向量.对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示(否则这 n-r+1
-
最佳答案:系数矩阵的秩小于等于未知数的个数
-
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
-
最佳答案:该齐次线性方程组的解空间的维数是n-r.该齐次线性方程组的任意的n-r个线性无关的解向量都是在解空间的一个向量组,构成解空间的一组基,所以构成该方程组的一个基础
-
最佳答案:因为矩阵A的秩为1所以AX=0的基础解系的基数为2又X1,X2,X3是三个解向量所以X1-X2=列向量(2,-2,3)和X1-X3=(0,0,2)是AX=0的基
-
最佳答案:显然不对,Ax=0和Bx=0的解空间不一定有包含关系.举个例子A=0 0 00 1 00 0 1B=1 0 00 0 00 0 0
-
最佳答案:首先必须说明的是 n个未知数必须需要最少n个线性无关的方程组才能解算出来而当齐次线性方程组系数矩阵的秩等于未知量个数时方程组的系数矩阵总是能化简成这样的对角阵形