-
最佳答案:导函数是连续的.因为可导,所以对每一点x0,都有左导数=右导数即f'(x0-)=f'(x0+)=f'(x0)而这正是符合f'(x0)在x0处连续的条件.
-
最佳答案:f(x)可导和它的导函数f`(x)连续没关系例子:当x≠0,f(x)=x^3/2sin1/x x=0时f(x)=0 根据定义可以验证f(x)在0可导,但f`(x
-
最佳答案:不一定,比如正切函数.
-
最佳答案:闭区间连续,开区间可导,端点导数不存在,只有左右导数
-
最佳答案:若函数fx在闭区间〔a, b〕上一致连续,则对于任意给定的正数ε>0,存在一个只与ε有关与x无关的实数ζ>0,使任意x1,x2∈[a,b],|x1-x2|
-
最佳答案:一切初等函数在其定义域上都是可导的,因此要判断一个函数在某个区间是否可导只需要看该区间是不是定义域上的子区间.而由于可导的函数必然是连续函数,因此一般来说可导函
-
最佳答案:可以
-
最佳答案:不对 可导和连续没有必然的关系 你想如果函数在区间不连续它一样有导函数 例子是当区间有可去间断点时
-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:不是连续的 当x不等于0时 f(x)=x*x*sin(1/x) 当x=0时 f(x)=0 则导数在x=0处不连续