-
最佳答案:1.函数在区间内可导,其导函数在区间内未必连续.例如函数f(x) = (x^2)sin(1/x),当x不为0时,= 0,当x=0时,其导函数在R上处处存在,f‘
-
最佳答案:可以给你一个更简单的证明,你看是否对?∵f(x)是可导的偶函数 ∴ f(-x)=f(x)两断求导得:-f'(-x)=f'(x) 即f'(-x)=-f'(x)∴f
-
最佳答案:呵呵 多元函数可导啊~ 这么说吧 我们举一个最简单的例子 f(x,y)=X+Y 这个函数对于 x 和 y 的偏导(函)数 都是 1 对吧? 但是对于 x 的偏导
-
最佳答案:先推荐读一本书同济大学出版的《微积分》(非推销)1问:函数连续是可导的必要条件.但可导函数不一定连续.我只举一个例子:比如函数f(x)=|1/x|在0处就可导.
-
最佳答案:α>0时,[(x-1)^α]cos1/(x-1)->0,x->1即lim[x->1]f(x)=f(1)∴α>0时,f(x)在x=1处连续α>1时,[f(x)-f
-
最佳答案:f(2)=10, 这个是关键.右导数是6,OK.左导数=lim_(x->2-)((3x+1)-10)/(x-2)=3lim_(x->2-)(x-3)/(x-2)
-
最佳答案:不连续,所以不可导
-
最佳答案:只要左右导数都存在且相等,则x0处的导数就一定与这个左右导数值相同.可去间断点处左右导数至少有一个是不存在的.我想你是把左右导数与导函数的左右极限搞混了.希望可
-
最佳答案:可以,可导必连续
-
最佳答案:一般地只能通过初等函数在其定义域内均是连续可导的,对于多段函数研究分段端点,这里研究点就是用上面各位提到的:先判断是否连续,在看某点左导数是否等于右导数