问答
函数的n阶导数题(1个结果)
一道利用泰勒公式的证明题设函数f(x)在点附近有n+1阶连续导数,且f'(x0)=f''(x0)=...=fn(x0)=
最佳答案:对于f(x)在x0点的泰勒公式,由于f'(x0)=f''(x0)=...=fn(x0)=0,所以泰勒公式中从第二项到第n项都为0,所以只剩下第一项和第n+1项,
函数的n阶导数题
问答