-
最佳答案:显然f(0)=1两边求导:f'(x)-e^x=xf(x)-∫(0→x)f(t)dt-xf(x)=-∫(0→x)f(t)dt显然f'(0)=1再求导:f''(x)
-
最佳答案:只要牵涉到变量的变化,变量之间有依赖关系,并能抽象出变化率的等式,都可以考虑用常微分方程建模,离散情形用差分方程较为方便
-
最佳答案:This paper mainly studies the solution and application of second order ordinary
-
最佳答案:两边求导是为了去掉积分符号,这样就化成一个微分方程了.注意这里对x求导,因此积分项就变为f(x)了,也就是y.而x/2*[1+f(x)]对x求导为: 1/2[1
-
最佳答案:因为题中第一句给出:曲线L位于第一象限.所以y取正的.第一象限y为正,不能为0(0算在坐标轴上,不算第一象限),而x=0或3的话,y=0,这两点都在坐标轴上,不
-
最佳答案:在Java中,任何变量在被使用前都必须先设置初值.Java提供了为类的成员变量赋初值的专门功能:构造方法(constructor)构造方法是一种特殊的成员方法,
-
最佳答案:dy/dt=ky(1000-y) k为一比例常数由此解微分方程可得y与t的关系将y=250 t=3代入后确定K则得出结论
-
最佳答案:设该曲线为y=f(x)曲线的切线方程是y-f(x.)=f'(x.)(x-x.) 即y=f'(x.)(x-x.) +f(x.)由题意可得到 x.=-x.f'(x.
-
最佳答案:设在过程开始后t分钟容器中含盐x千克,在时刻t的容器内含液体10+3t-2t=10+t(升),此时溶液的浓度为x/(10+t)(千克/升).若经过dt时间,容器