-
最佳答案:n的分布函数G(n)n的概率密度函数g(n)ε的分布函数F(ε)ε的概率密度函数f(ε)f(ε)=1,0
-
最佳答案:第二个问题:宽泛的求分布函数那就按照给定的x、y的概率密度不为0的区间。负无穷-正无穷是定义区间,具体到某个分布的话都有明确交代的,例如几何分布x>0,均匀分布
-
最佳答案:当概率分布函数不是连续函数时,概率密度是不存在的(随机变量根本不是连续型的).此问题的随机变量X可按如下方式构造:我们可考虑分两步做的一个大随机试验.先从1,2
-
最佳答案:概率密度函数从负无穷到正无穷的积分是1,可以确定系数分布函数当变量趋于负无穷时极限是0,正无穷是极限是1,可确定系数.
-
最佳答案:因为X在[-1,1]上服从均匀分布,故X的概率密度为fX(x)=1/2,x∈[-1,1]0,其他因为Y=X^2所以当x∈[-1,1]时,y∈[0,1]当y≤0或
-
最佳答案:注意Φ(x)表示标准正态分布的分布函数,φ(x)表示标准正态分布的概率密度函数且Φ‘(x)=φ(x),φ'(x)=-xφ(x)于是题目中令2√y/a=t,dt/
-
最佳答案:概率分布函数右连续.设x0 为分布函数F(x)的一个间断点.则 F(x0)= lim(x--->x0+) F(x).密度函数不存在.因为左导数=无穷大.
-
最佳答案:f(x)=ax,∫[-∞,∞] f(x)dx=ax^2/2|(0,2)=2a=1a=1/2(1)分布函数F(x)=0, x
-
最佳答案:∫ 【-∞,+∞】f(x)dx=∫【-∞,0】0dx ;等于0,在此区间,概率密度函数f(x)=0,积分=0+∫【0,1】Ax²dx ; 积分=Ax³/3|[0
-
最佳答案:你用他们两个的范围表示出x和z的关系,也就是说在以z为横轴,x为纵轴的坐标系中画出区域,最后对x求积分就可以利用 ∫f(x,z-x)dx,上下线是x的范围,使用