-
最佳答案:若求得:y" - p(x)*y' - q(x)*y = 0 的两个线性无关的特u(x),v(x),则非齐次方程:y" - p(x)*y' - q(x)*y =
-
最佳答案:显然对应的特征方程的解为 正负i所以对应的方程是 y''+y=0
-
最佳答案:搂主是不是把两个问题搞混了即:当y1和y2线性无关时y=C1y1+C2y2是该方程的通解.
-
最佳答案:y4=y2-y1=e^-x是其次的特解根据微分方程解的结构定理通解为:y=c1y3+c2y4+y1=c1x+c2(e^-x)+3+x^2
-
最佳答案:很简单,由于[a(x)]'+P(x)*a(x)=Q(x)①[b(x)]'+P(x)*b(x)=Q(x)②①-②得[a(x)-b(x)]'+P(x)*[a(x)-
-
最佳答案:为什么大家都不认真看书呢,这个书上应该有吧?这个不是常数变易法,是构造法.设原微分方程是:y''+ay'+by=0,现已知y1=e^(rx)是方程的一个解,下面
-
最佳答案:(1)是什么?
-
最佳答案:证:反证法!要证y1,y2之比不为常数,即证明y1,y2线性无关!假设y1,y2线性相关,设y2=ky1,因为y1,y2是二阶非齐次线性方程的特解,故它们都不是
-
最佳答案:解题思路:利用一阶线性非齐次微分方程解的结构即可∵y1(x)-y2(x)是对应齐次线性微分方程y'+P(x)y=0的非零解∴它的通解是Y=C[y1(x)-y2(
-
最佳答案:考虑方程的通解y*;特解yt;;则通解方程应该是y=C*y*+yty1=ay*+yt;y2=by*+yt.y2不等于y1;a不等于b所以选B