-
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
-
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
-
最佳答案:(I)直线:曲线:,………………5分(II)设,由消去得…………………7分∴y 1y 2=(x 1-4)(x 2-4)=x 1x 2-4(x 1+x 2)+16
-
最佳答案:由ρ=4cosθ得,ρ 2=4ρcosθ,则x 2+y 2=4x,即(x-2) 2+y 2=4,故答案为:(x-2) 2+y 2=4.
-
最佳答案:解题思路:由ρ=4cosθ得,ρ2=4ρcosθ,根据极坐标与直角坐标互化公式:ρ2=x2+y2,ρcosθ=x,ρsinθ=y可得直角坐标方程.由ρ=4cos
-
最佳答案:两边乘ρ得ρ²=2ρsinθ所以有x^2+y^2=2y即x^2+y^2-2y=0x^2+(y-1)^2=1所以ρ=2sinθ表示的曲线是圆
-
最佳答案:(1) ρ =4cos θ .(2)2(1)由已知得,曲线 C 的普通方程为( x -2) 2+ y 2=4,即 x 2+ y 2-4 x =0,化为极坐标方程
-
最佳答案:解题思路:(Ⅰ)利用x=,y=,可把曲线C的极坐标方程转化为直角坐标方程.(Ⅱ)把直线l的参数方程转化为普通方程,求出圆心到直线l的距离,最后利用勾股定理即可求
-
最佳答案:解:(1)由ρ=2sinθ,得x 2+y 2-2y=0,即x 2+(y-) 2=5.。。。。。。。4分(2)解法一:将l的参数方程代入圆C的直角坐标方程,得即t
-
最佳答案:(1),当时,曲线C为圆心在原点,半径为2的圆,当时,曲线C为中心在原点的椭圆;(2)不存在.试题分析:(1)先将曲线的参数方程转化为普通方程,讨论的值来判断方