-
最佳答案:局部有界和函数在某点有极限是两个不同的概念,只是说,如果函数在某一点极限存在,那么这个函数就在这个点的某个空心δ邻域内是有界的,也就是说函数局部有界.并没有说局
-
最佳答案:函数的局部有界性是指函数在极限点的邻域内有界,而在整个定义域上并不一定有界.数列其实可以看作是一个离散的函数.但数列求极限是总是令N趋向于无穷大.而函数求极限则
-
最佳答案:大学里的东西忘光了,不过如果要给反例的话我感觉可以试试分段函数.比如在[0,1]时,f(x) = x,在(1,2]时,f(x) = x+1在(2,正无穷)随便给
-
最佳答案:极限这个概念本身就是局部性质,函数在一点a的极限只能表示a点附近的性质,所以必然是局部性.事实上如果函数f(x)在点a有极限,那么必然存在点a的一个小邻域在其上
-
最佳答案:收敛数列是单调有界的,那么数列的符号就是定下来的.但是函数却不一定,可是出现趋于极限的过程中函数的符号发生变化.
-
最佳答案:错如f(x)=1/x,在(0,无穷)上无上界
-
最佳答案:因为数列在n≦N部分只有有限个数,并且数列的每一项数都必须是非无穷大的实数.但是函数在|x|≦X有无限个x的取值个数,并且|x|≦X的部分有可能有极限是无穷大是
-
最佳答案:这句话不对,反例是f(x)=1/x.经济数学团队帮你解答,请及时采纳.谢谢!
-
最佳答案:如函数:当xo=0,当x>0,f(x)=1;x