-
最佳答案:既不充分也不必要(函数可倒性未知的话)如果函数可到,则是必要不充分
-
最佳答案:这个命题不正确!因为命题本身的陈述中并未明确f'(a)是否存在,而一个函数可能在其导数不存在的点处取得极值.例如,函数f(x)=|x|在x=0处显然取得极小值,
-
最佳答案:解题思路:由极值的定义知,函数在某点处有极值,则此处导数必为零,若导数为0时,此点左右两边的导数符号可能相同,故不一定是极值,由此可以得出结论,极值点处导数比较
-
最佳答案:(1) f(x)=ax^3/3+(b-1)x^2/2+xf'(x)=ax^2+(b-1)x+1=a(x-x1)(x-x2)由韦达定理x1*x2=1/a,x1+x