-
最佳答案:解题思路:先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆
-
最佳答案:曲线C的极坐标方程为ρsin(θ-π6 )=3,即 ρsinθcosπ6 -ρcosθsinπ6 =3 ,它的直角坐标方程为:3 y-x-6=0 ,点A(2,π
-
最佳答案:⑴∵曲线C的极坐标方程为ρ=4cosθ∴曲线C的直角坐标方程为(x-2)∧2+y∧2=2即曲线C是以C'(2,0)为圆心,半径为√2的圆⑵∵圆C与直线l相切∴d
-
最佳答案:解题思路:(1)解:由可化为直角坐标方程(1)参数方程为为参数)可化为直角坐标方程(2)联立(1)(2)得两曲线的交点为所求的弦长.
-
最佳答案:解题思路:根据题意,由于圆的参数方程为(为参数),那么额控制圆心为(0,1),半径为1,圆的极坐方程为,可知圆心为(0,2)半径为2,那么利用圆心距和半径的关系
-
最佳答案:解题思路:(1)由得,即4分(2)将l的参数方程代入圆c的直角坐标方程,得,由于,可设是上述方程的两个实根。所以,又直线l过点P(3),可得:10分(1)。(2
-
最佳答案:解题思路:(1)设极点为O,由该圆的极坐标方程为ρ=4,知该圆的半径为4,又直线l被该圆截得的弦长|AB|为4,所以∠AOB=60°,∴极点到直线l的距离为d=
-
最佳答案:(1) ρ =4cos θ .(2)2(1)由已知得,曲线 C 的普通方程为( x -2) 2+ y 2=4,即 x 2+ y 2-4 x =0,化为极坐标方程
-
最佳答案:(1)(2)33.试题分析:(1)将极坐标方程按照两角和的正弦公式展开,利用,,进行化简,得到普通方程,对于直线的参数方程,进行消参,也可得到关于的普通方程;属
-
最佳答案:曲线ρ(cosθ+sinθ)+2=0,即 x+y+2=0,ρ(sinθ-cosθ)+2=0,即 y-x+2=0,联立方程组,解得 x=0,y=-2,故两曲线的