-
最佳答案:证:设偶函数为f(x),奇函数为g(x)则之和:h(x)=f(x)+g(x)因为f(x)=f(-x),g(x)=-g(-x)所以h(-x)=f(-x)+g(-x
-
最佳答案:首先给出偶函数和奇函数的定义:1.函数M(x)的定义域为D1,对任意的x属于D1,都有M(-x)=M(x),则称M(x)是偶函数;2.函数N(x)的定义域为D2
-
最佳答案:1. 证明,可以构成任意初等函数f(x)的奇偶函数的存在性.对于定义域中函数 f(x) 可以表示为无限点构成的分段函数.对于任意一点 x0 均可表达成 f(x0
-
最佳答案:证明:∵ 任意一个奇函数可表示为:[f(x)-f(-x)]/2,任意一个偶函数可表示为:[(f(x)+f(-x)]/2,∴ 对称区间(-l,l)上任意函数:f(
-
最佳答案:f(x+1)是偶函数f(0)=f(2)f(x)在区间【1,正无穷】是单调递减f(1)>f(0)
-
最佳答案:1.由题意可得:f(x)=0,a>b>0,则f(a)>f(b)>0,f(a)=-f(-a),f(b)=-f(-b),f(a)=g(a),f(b)=g(b),g(
-
最佳答案:(-4,-1)∪(1,4)因为f(x)是偶函数,所以f(-4)=f(4)=0,f(-1)=f(1)=0根据单调性可以画出 f(x)在【0,正无穷)上的草图,再由