-
最佳答案:不对,也可能无解但当有解时解唯一所以第4个选项正确
-
最佳答案:秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为
-
最佳答案:是的如果增广矩阵(A|b)的秩r(A|b)=r(A)那么就有解 不相等就无解因为r(A)=n时相应的齐次线性方程组只有非零解 非齐次线性方程组就有唯一解r(A)
-
最佳答案:(1) A-->r2+2r1,r3+3r1,r2*(1/7)1 2 -3 -20 7 -1 00 14 -2 0r3-2r21 2 -3 -20 1 -1/7
-
最佳答案:基础解系中解向量的个数为n-r(A)=1,而n=3
-
最佳答案:A=1 1 1 1 2 4 3 13 5 2 44 6 3 5r2-2r1,r3-3r1,r4-4r11 1 1 1 0 2 1 -10 2 -1 10 2 -
-
最佳答案:解题思路:直接根据齐次线性方程组Ax=0基础解系所含线性无关的解向量个数等于未知数的个数与系数矩阵的秩之差,得到答案.由A为m×n矩阵,知Ax=0的未知数的个数
-
最佳答案:从题目看,应该是个选择题a+k1c+k2d是AX=B的通解,但还有其他的表示方式.比如(a+b)/2 +k1c+k2d 也是 AX=B的通解.你应该把所有选项贴
-
最佳答案:设系数矩阵的秩为r,这基础解空间的维数就是n-r另外注意:解向量的个数是无穷的,问法不对,可以说解空间的维数,也可以说一组基础解系中的向量个数,或者说线性无关的
-
最佳答案:(n1+2n2,kn1-4n2+kn3 ,n1+2n2-n3) = (n1,n2,n3)KK =1 k 12 -4 20 k -1|K| = 2k+4所以 k≠