-
最佳答案:This paper mainly studies the solution and application of second order ordinary
-
最佳答案:1、对应的齐次线性方程的特征方程是r^2-3r+2=0,根是1.2.所以齐次线性方程的通解是y=C1*e^x+C2*e^(2x).因为λ=0不是特征方程的根,所
-
最佳答案:方程:d^2(y)/d(x^2)+a*dy/dx+b*y=0解方程:z^2+a*z+b=0得出z1,z2若两者是重根,则得到基本解组,z1*exp(z1*t),
-
最佳答案:求y*'和它的二阶导数是为了求出A B C的值将y*以及它的一阶,二阶导数带入所求方程中可得出ax^2+(-4a+b)x+(2a-2b+c)=x^2
-
最佳答案:令y' = v,y'' = v'y'' - 1/x · y' = xe^xv' - v/x = xe^x,e^∫ - 1/x dx = e^- ln|x| =
-
最佳答案:你这个题目应该是e的2λx的次方吧,如果像你这样说的话那答案就是[(C1+C2x)e^-1]+e^2λ我估计你打错了,少了一个x这个采用微分算子法比较方便y"+
-
最佳答案:用幂级数法:设y=c0+c1x+c2x^2+...+cnx^n+...则y'=c1+2c2x+3c3x^2+...+ncnx^(n-1)y"=2c2+6c3x+
-
最佳答案:比如y'' py' qy=f(x),二就是y导数最高为二阶,线性就是关于y的各阶导数和y的方程是线性的,常系数就是p,q为常数,齐次就是f(x)为零.详细请参考
-
最佳答案:设y=x*u是微分方程的解,则y'=u+xu',y''=2u'+xu'',代入方程,得u''=0,所以u=C1x+C2,所以微分方程的通解是y=xu=x(C1x
-
最佳答案:不用特别的去分,只要把握住,右侧函数是多项式乘指数的时候,看指数x的系数(比如说是t)是不是特征根就可以了,应该知道t不是特征根,设的时候k=0,t是特征根中的