-
最佳答案:AX=0有无穷多解因为 m
-
最佳答案:解题思路:齐次线性方程组有没有非零解的判断,由其系数矩阵的秩来决定,这里就需要判断AB的秩.因为AB矩阵为m×m方阵,所以未知数的个数为m个,又因为:r(AB)
-
最佳答案:解题思路:讨论系数矩阵与增广矩阵的秩的关系,即可求解.齐次线性方程组Am×nx=0中m<n,则有R(A)≤m<n,所以,齐次线性方程组Am×nx=0必有非零解,
-
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
-
最佳答案:选BA: 当m>n时 存在 "增广矩阵A的秩 > A的秩 " 的可能 使得 AX不等于b 即:方程组不一定有解C: 当m=n时 存在 r < n 即:AX=b存
-
最佳答案:定理中有解的充分必要条件是r(A,b)=r(A)。因为r(A)=m=A的行数,而(A,b)只有m行,秩不可能大于m,所以r(A,b)=m=r(A),从而方程组A
-
最佳答案:若Ax=b有解,则b可由A的列向量线性表示; 而 A^TY=0 的解与A^T的行向量正交,所以 A^TY=0 的解与A的列向量正交,故与b也正交.反之逆推回去即
-
最佳答案:DBC没说r(A)=r(A,b)不能保证Ax=b有解对于A,Ax=0 仅有零解,无法确定m与n的关系,从而也不能确定r(A)与r(A,b)的关系对于D,Ax=b
-
最佳答案:解题思路:可以利用齐次方程组有解的判断定理,也可以利用排除法解答.Ax=b有无穷多个解⇒R(A)=R(B)<n⇒R(A)<n⇒Ax=0有非零解.对(A):如x1
-
最佳答案:不对,也可能无解但当有解时解唯一所以第4个选项正确