-
最佳答案:.已知直线的参数方程是(t是参数)圆C的极坐标方程为.(1)求圆C在直角坐标系下的方程;(2)由直线上的点向圆引切线,求切线长的最小值.(1)---------
-
最佳答案:没区别二重积分时ρθ都是未知数,像x,y一样可以简化运算但曲线积分时,参数方程中,未知数只有角度而已啊,半径已知,何必再用极坐标?
-
最佳答案:1)x=t,y=1+t/2把直线参数方程有参数的放在等号一侧 再用Y-1/X消除T就可以得出2y-x-2=0圆C:x^2+y^2=2y+2x(等式两边同时乘以P
-
最佳答案:解题思路:先在直角坐标系中算出圆的直角坐标方程,再利用直角坐标与极坐标间的关系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,求出其极坐标方程即可.圆
-
最佳答案:圆上任意一点的极坐标(p,e)则,对应的直角坐标(pcose,psine)由:p=2cose-(2√3)sine则:p^2=2pcose-(2√3)psine所
-
最佳答案:解题思路:先将圆的极坐标方程化为直角坐标方程,再把直线上的点的坐标(含参数)代入,化为求函数的最值问题,也可将直线的参数方程化为普通方程,根据勾股定理转化为求圆
-
最佳答案:(1)y=1+2t=1+2x ,L 的普通方程为 2x-y+1=0 .由 ρ=√2sin(θ+π/4)=sinθ+cosθ ,两边同乘以 ρ 得 x^2+y^2
-
最佳答案:设直线L的参数方程为x=2+tcosα,y=tsinα(t为参数)将其代入圆M的方程x∧2+(y+2)∧2=4得t∧2+4(cosα+sinα)t+4=0可知t
-
最佳答案:圆C的普通方程为,直线l的普通方程为,因为圆心(1,0)到直线l的距离为所以圆上点到直线l的最短距离为d-r=.
-
最佳答案:(1)圆M的普通方程为x2+(y+2)2=4,圆心M(0,-2),半径等于2.直线的极坐标方程ρsin(θ+π4)=22,即x+y-1=0.圆心到直线x+y-1