-
最佳答案:同济第六版《高等数学》上册p343-344.有很清晰的推导过程.简单说就是把f(x)变成负数的形式后,是e的指数形式,然后设特解是e的指数形式,最后还原到实数域
-
最佳答案:怎么多个2A,是y'' 将 Ax2+Bx+C=y 求两次导,得到 2A即 y''+y= 2A+ Ax2+Bx+C 后面的是y
-
最佳答案:方程:d^2(y)/d(x^2)+a*dy/dx+b*y=0解方程:z^2+a*z+b=0得出z1,z2若两者是重根,则得到基本解组,z1*exp(z1*t),
-
最佳答案:求y*'和它的二阶导数是为了求出A B C的值将y*以及它的一阶,二阶导数带入所求方程中可得出ax^2+(-4a+b)x+(2a-2b+c)=x^2
-
最佳答案:特征方程本身就是一个一元方程.高阶常系数齐次线性微分方程的特征方程是一个一元高次方程.这里的特征方程一定能够得到与特征方程的次数相同个数的解.对于一元一次和一元
-
最佳答案:你这个题目应该是e的2λx的次方吧,如果像你这样说的话那答案就是[(C1+C2x)e^-1]+e^2λ我估计你打错了,少了一个x这个采用微分算子法比较方便y"+
-
最佳答案:e^(ix)和e^(-ix)是此方程的两个无关解基,但是是复数域的解基,即y=C1e^(ix)+C2e^(-ix) (C1,C2为复数)要求其在实数范围内的解基
-
最佳答案:比如y'' py' qy=f(x),二就是y导数最高为二阶,线性就是关于y的各阶导数和y的方程是线性的,常系数就是p,q为常数,齐次就是f(x)为零.详细请参考
-
最佳答案:问题具体点吧.如果是2阶的话形式类似于:y''+py'+qy=0然后求它的特征方程:r^2+pr+q=0解出r 然后分类讨论r的情况,然后,然后您看书吧...太
-
最佳答案:解特征方程就行了然后代入公式