-
最佳答案:首先给出偶函数和奇函数的定义:1.函数M(x)的定义域为D1,对任意的x属于D1,都有M(-x)=M(x),则称M(x)是偶函数;2.函数N(x)的定义域为D2
-
最佳答案:1. 证明,可以构成任意初等函数f(x)的奇偶函数的存在性.对于定义域中函数 f(x) 可以表示为无限点构成的分段函数.对于任意一点 x0 均可表达成 f(x0
-
最佳答案:一次函数定义域R,即x可以取任意实数值域也是R,观察图像可知
-
最佳答案:证明:∵ 任意一个奇函数可表示为:[f(x)-f(-x)]/2,任意一个偶函数可表示为:[(f(x)+f(-x)]/2,∴ 对称区间(-l,l)上任意函数:f(
-
最佳答案:f(x)=g(x)+h(x),其中g(x)=[|f(x)|+f(x)]/2,h(x)=[f(x)-|f(x)|]/2,显然g(x)>=0是非负函数,h(x)
-
最佳答案:设f(x)=h(x)+g(x),其中h(x)为偶函数,g(x)为奇函数,则在(-a,a)上,f(-x)=h(-x)+g(-x)=h(x)-g(x),……①又因为
-
最佳答案:设f(x)表示为一个偶函数g(x)与一个奇函数h(x)之和即f(x)=g(x)+h(x) (1)f(-x)=g(-x)+h(-x)g(-x)=g(x),h(-x
-
最佳答案:题目应该有问题,一个偶函数和一个奇函数乘积还是一个奇函数,而f(x)是任意一个函数,它可以为奇函数也可以为偶函数,因此有错误.如果改为表示成一个偶函数和一个奇函
-
最佳答案:解题思路:根据题意:f(x)=g(x)+h(x)=lg(10x+1),而g(x)是奇函数,h(x)是偶函数,因为f(x)=lg(10x+1),所以f(-x)=-
-
最佳答案:解题思路:根据题意:f(x)=g(x)+h(x)=lg(10x+1),而g(x)是奇函数,h(x)是偶函数,因为f(x)=lg(10x+1),所以f(-x)=-