-
最佳答案:考虑前n项和 得Sn=(1-x^n)/(1-x)∴当|x|∞,可得x^n->0∴ ∑x^n=1/(1-x) |x|
-
最佳答案:用等比数列求和公式也能求:Sn=a1(1-q^n)/(1-q) =(a1-an×q)/(1-q) (q≠1)x≠1时,1+x+x^2+x^3+……+x^n=(1
-
最佳答案:这里涉及两个函数(1)事先给定一个函数f(x)(2)根据f(x)构造一个Fourier级数,这是一个形式上的无穷项的和,和函数F(x)不一定存在.所以要判断它是
-
最佳答案:但是收敛半径是不变的.你看求导是要两个方向导数相等.可以理解为它外面不能理解的部分使得在这点处的导数不存在.这样有可能缩小.积分正好相反!
-
最佳答案:1)提示:注意到[(n-1)^2]/(n+1) = (n+1)-4-4/(n+1),所以原级数可分解为∑(n>=0)(n+1)(x^n) - 4∑(n>=0)(