-
最佳答案:正态分布的分布函数没有初等函数形式,直接用积分表示就行了,期望是它的第一个参数,用连续型随机变量的期望定义求就行了(积分)
-
最佳答案:如果随机变量X与Y相互独立,可以直接相乘,求变量函数的分布函数,有两种办法:一种用卷积求密度函数在积分,另一种从定义出发,直接求解,推荐你使用第二种,这样可以保
-
最佳答案:FZ(z)=P{Z<=z}=P{X+Y<=z}=∫ P{X<=z-y} dy ,积分上限h,下限-h,h>0
-
最佳答案:F(z)=P(Z≤z)=P(min(X,Y)≤Z)=1-P(min(X,Y)>Z)=1-P(X>Z,Y>Z)=1-P(X>Z)P(X>Z)=1-[1-P(X≤Z
-
最佳答案:F(y)=P(Y
-
最佳答案:u(0,1),概率密度函数fX(x)=1 ,0
-
最佳答案:直接用公式就行,难点在于被积函数的区域中 dy的范围;0≤y≤1与y≤2/z(第二个不等式由Z=X/Y得x=yz代入0≤x≤2得到的)由这两个不等式在(z,y)
-
最佳答案:Y+Z的分布就是X+2的分布,木有看出来么后一个是要求写成积分形式吧?解析式好像写不出来
-
最佳答案:FZ(z)=P{Z
-
最佳答案:FZ(z)=P{Z