-
最佳答案:解齐次线性方程组一般都是对系数矩阵进行初等行变换,之后求得通解解非齐次线性方程组,常用的有两种解法,一种是在未知数个数和方程个数相等的时候,使用克拉默法则,不过
-
最佳答案:非齐次线性方程组的根是否存在跟它的系数矩阵的秩是某与增广矩阵的秩相等。r(A)=r,当r=m时,证明系数矩阵行满秩,行满秩的情况下,只改变矩阵的列数,矩阵的秩是
-
最佳答案:对于非齐次线性方程组:b=Ax,b≠0若x1,x2为其两个不等解则,x1-x2为0=Ax的解因为:b=Ax1b=Ax2相减:根据线性性质,有0=Ax1-Ax2=
-
最佳答案:你所说的最简形是不是标准形?如果是的话,那么在你求解时,只要将方程组化简到行阶梯形就可以了.两者区别在于标准形是矩阵经过行初等变换和列初等变换得到的,行阶梯形只
-
最佳答案:化到最简以后,因为系数矩阵代表的是方程的系数前面的系数变成1,相当于你解方程把未知量的系数变成1一样,这样就可以更好的把自由未知量表示出来具体的建议你还是看一下
-
最佳答案:A为n维行向量,意味着它的秩是1,即R(A)=1,基础解系的向量个数为n-R(A)=n-1.明白了吗?
-
最佳答案:证:因为 |A|=0,所以 r(A)=n-1.故 r(A) = n-1.所以齐次线性方程组AX=0 的基础解系含 n-r(A)=1 个解向量.所以AX=0的任一