-
最佳答案:二元函数的极值求法是有专门的方法的如果在该点可导,同时有fx'(x0,y0)=0,fy'(x0,y0)=0那么(x0,y0)为函数f(x,y)的极值点.如果不可
-
最佳答案:函数在邻域内有二阶导函数,一阶连续导数存在是一阶导函数连续.洛必达法则适用于0/0性,无穷比无穷型的函数求极限.
-
最佳答案:采纳在回答
-
最佳答案:你的叙述是有问题的:1)函数在间断点处是没有导数的;2)在可去间断点补充定义使之连续后就已经不是可去间断点了.所以,这里这个问题应该是 “分段函数怎么求二阶导数
-
最佳答案:你是不是认为函数f(x,y)只在要讨论的区域D上才有定义啊?不是这样的,例如函数f(x,y)=xy,我们取区域D为圆x^2+y^2≤1,这是一个闭区域,但是f(
-
最佳答案:就用递增递减关系来判断啊(这个是万能的)比如说:f(x)=x^3一阶导:f'(x)=3x^2=0,可能极值点为x=0当x0由此可知x在负无穷到正无穷的区间上单调
-
最佳答案:这个不能断定是极值点,比如x的立方这个函数,就满足题意,但0不是他的极值点,应该x=0时一阶导数等于0,并且在0的任意小领域内二阶导数大于等于0,或者小于等于0
-
最佳答案:不能推出:一阶偏导数在该点也连续反例如下:f(x,y)=exp(x*y)/y^(3/2) (y!=0),f(x,0)=0则:df/dx=exp(x*y)/y^(
-
最佳答案:1、[f(x)-e^x]sinydx-f(x)cosydy是一个二元函数的全微分d{[f(x)-e^x]siny}/dy=d{-f(x)cosy}/dx[f(x