-
最佳答案:解题思路:直接根据齐次线性方程组Ax=0基础解系所含线性无关的解向量个数等于未知数的个数与系数矩阵的秩之差,得到答案.由A为m×n矩阵,知Ax=0的未知数的个数
-
最佳答案:不对,也可能无解但当有解时解唯一所以第4个选项正确
-
最佳答案:|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
-
最佳答案:|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0 仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0
-
最佳答案:4
-
最佳答案:依题意r(A)+r(B)=4.因为r(A)>0,所以B不满秩,因而|B|=0.若A的伴随矩阵A*不等于零,则r(A)=3或者4,但是B不是零矩阵,所以r(B)=