-
最佳答案:同济第六版《高等数学》上册p343-344.有很清晰的推导过程.简单说就是把f(x)变成负数的形式后,是e的指数形式,然后设特解是e的指数形式,最后还原到实数域
-
最佳答案:这种题分为两种类型:1.不带有三角函数的.2.带有三角函数的.
-
最佳答案:λ=2,2不是特征方程的根
-
最佳答案:设y*是n阶常系数非齐次微分方程的一个特解,y1,y2,...,yn是对应的齐次方程的n个线性无关的特解,则.齐次方程的通解为Y=C1y1+C2y2+...+C
-
最佳答案:通常情况下,求二阶常系数非齐次线性微分方程的特解有3种方法:①待定系数法 ②拉普拉斯变换 ③微分算子法虽然它们的解法过程形式迥异,但最后的特解形式一般情况下却是
-
最佳答案:解其对应的齐次常系数线性微分方程时,其解必定含有一个任意常数C,把常数C看作是个变量,并假定就是非齐次常系数线性微分方程的一个特解.将其代入非齐次常系数线性微分
-
最佳答案:右边看 成 Ce^0,用代系数法,或者算子法都行了.
-
最佳答案:k的取值由λ决定.如果λ不是齐次方程的特征方程的根,k=0;如果λ是齐次方程的特征方程的单根,k=1;如果λ是齐次方程的特征方程的重根,k=2.当k的值确定了之
-
最佳答案:显然对应的特征方程的解为 正负i所以对应的方程是 y''+y=0
-
最佳答案:解题思路:首先,由由特解的形式,确定特征方程;然后,得到原微分方程的形式.由题意,y1=e-x,y2=2xe-x,y3=3ex是三个线性无关的解因此其特征根为: