-
最佳答案:通项cn=cosin=chn=[e^n+e^(-n)]/2,所以limc(n+1)/cn=lim[e^(n+1)+e^(-n-1)]/[e^n+e^(-n)]=
-
最佳答案:有点难,幸好有现成答案,而且推广开来了求 :(a+i*b)^(a+i*b)和(r*(cosa+i*cosb))^(r*(cosa+i*cosb))结果的一般形式
-
最佳答案:这个很简单啊,和实数的积分是完全类似的.∫ [0→i] e^-z dz=-e^(-z) [0→i]=1-e^(-i)=1-cos1+isin1
-
最佳答案:复分析复分析是研究复函数,特别是亚纯函数和复解析函数的数学理论。这些函数定义在复平面上,其值为复数,而且可微。研究中常用的理论、公式以及方法包括柯西积分定理、柯
-
最佳答案:e^(it)=cost+isint据此可知:(1+i)^i=[e^(ln(1+i))]^i=e^(i*ln(1+i))=e^[i*ln(2^(1/2)(cosP
-
最佳答案:常数c和函数f(x)作卷积,等于f(x)从负无穷到正无穷的积分的c倍因此,当f(x)是常数b时,负无穷到正无穷的积分为 b(正无穷-负无穷),当b>0时,结果为
-
最佳答案:(IM Z 表示对Z求虚部)sinZ= IM (cosZ +isinZ)=IM [e^(iz)]=> Z 是复数,所以 cosZ,sinZ 都是复数; 要取那个