-
最佳答案:奇函数:f(x)=-f(-x),关于x=1对称:f(1+x)=f(1-x),那么f(x+2)=f(1-(x+1))=f(-x)=-f(x),即f(x+2)=-f
-
最佳答案:解题思路:由函数f(x)是定义在R上的奇函数,可得f(-x)=-f(x),从而得出函数F(x)=|f(x)|+f(|x|)为偶函数,根据偶函数的性质可求.∵函数
-
最佳答案:f(x)=f(2a-x)=-f(x-2a)得f(x-2a)=-f[(x-2a)-2a]=-f(x-4a)f(x)=f(x-4a)4a是其一个周期
-
最佳答案:当然必须如此,因为奇函数是定义域内任意x都有f(-x)=-f(x),所以如果有一个x0是定义域内的点,那么-x0也必须是定义域内的点.所以奇函数的定义域必须是相
-
最佳答案:(1)因为f(x)的图象关于x=1对称,所以f(1+x)=f(1-x)因为f(x)是R上的奇函数,所以f(x+1)=-f(x-1).所以f(x+2)=-f(x)
-
最佳答案:解题思路:(1)根据函数是奇函数得到f(-x)=-f(x),所以令x=0得,f(-0)=-f(0),可得f(0)=0.(2)根据函数关于x=1对称得到f(1+x
-
最佳答案:(1)f(0)=0,(2)函数f(x)是周期为4的函数;(3)
-
最佳答案:解题思路:(1)根据函数是奇函数得到f(-x)=-f(x),所以令x=0得,f(-0)=-f(0),可得f(0)=0.(2)根据函数关于x=1对称得到f(1+x
-
最佳答案:解题思路:(1)根据函数是奇函数得到f(-x)=-f(x),所以令x=0得,f(-0)=-f(0),可得f(0)=0.(2)根据函数关于x=1对称得到f(1+x
-
最佳答案:若为奇函数,且定义域中包含0,则必有f(0)=0 关键是定义域中是否含0 若f(0)存在且不为0,那么就不是奇函数.